PRODUCTS OF PROLINE PEROXIDATION

Maria L. BADE

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA and Department of Biology, Boston College, Chestnut Hill, Chestnut Hill, Massachusetts, USA

and

Bernard S. GOULD

Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

1. Introduction

Proline can be oxidized to hydroxyproline *in vitro* by a system containing Fe^{2+} , L-ascorbate and EDTA, and employing O_2 or H_2O_2 as oxidant [1,2]. The system has been suggested as a model for collagen-proline hydroxylation [3-5]. We report here on a study of products from H_2O_2 hydroxylation of proline and prolylpeptides. It is shown that to be hydroxylated by H_2O_2 , proline must have its ring nitrogen unsubstituted. Peroxidation of free proline yields a variety of products, including hydroxyprolines, whereas N-substituted proline yields mainly a non-hydroxylated end product. A pathway of *in vivo* hydroxylation mechanistically similar to Fe^{2+}/H_2O_2 hydroxylation of proline is not consistent with our results.

2. Experimental

The standard reaction mixture and conditions have been described [6]. Hydroxylated products were assayed according to Woessner [7]. Prior to assay, free proline and dipeptides were desalted on Dowex 50 (H⁺) and dipeptides were hydrolyzed in 6 N HCl in a closed tube at 135° for 3 hr; polypeptides were dialyzed before hydrolysis. For amino acid separation

on paper, an aqueous solvent was used [8]; spots were developed with ninhydrin [9]. Amino acid analyzer runs were performed on an Aminco analyzer. Chemical were obtained commercially unless otherwise noted.

3. Results

Seventeen replicates of peroxidation of 1 mg free proline gave a mean (\pm S.D.) of 33 μ g (\pm 7) hydroxyproline. Omission of ascorbic acid from the reaction mixture in 15 replicates gave a mean yield of hydroxylated products of 32 μ g (\pm 5). Yield is insensitive to pH changes between 2 and 6.5, averaging 34 μ g hydroxyproline/mg proline over this range.

Yields of hydroxylated product from the peroxidation of prolylpeptides are shown in table 1 (columns 2 and 3). Since high though narrowly reproducible proline losses accompanied desalting of untreated dipeptides on Dowex (column 4), the μ g hydroxyproline found (column 2) have been normalized to 100% proline recovery (column 3). Only N-terminal proline appears to be hydroxylated. Particularly striking is the absence of hydroxylation in crystalline β -casein A which contains 15% proline residues.

Fig. 1 compares amino acid analyzer effluent traces

Table 1
Peroxidation of prolylpeptides. The reaction mixture contained (in μmole/3.6 ml final vol.): FeSO₄, 44; L-ascorbate, 55; EDTA, 15, citric acid, 300; Na₂HPO₄, 150; H₂O₂, 880; proline 8.7. Incubation time; 15 min at 40°; pH 4.

Substrate (mg)	Hydroxyproline Yield		Proline
	Found (µg)	Normalized to pro = 100% (µg)	% found after passage over Dowex
pro.pro (1)	5	16	32
pro.gly (1)	9	17	54
gly.pro (1)	1	2	59
leu.pro (1)	0.4	2	17
gelatin (4)	minus 130 ^a	-	_
β -casein A (10)	$2^{a,b}$	_	

^aFinal value minus initial value,

bReaction mixture at pH 6.5.

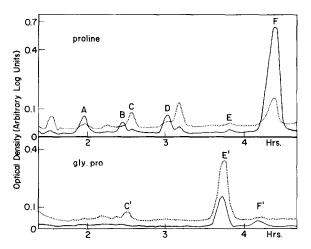


Fig. 1. Peroxidation of proline and gly.pro: amino acid analyzer effluent traces. 570 mμ absorption of ninhydrin adduct; — 440 mμ absorption of ninhydrin adduct.
Peaks: A, 3-trans-hydroxyproline; B, 4-trans-hydroxyproline; C, C', unknown peak appearing in reagent blank; D, 4-allohydroxyproline; E, E', unknown peak, chief product of gly.pro peroxidation; F, F', proline.

after peroxidation of free proline and of the peptide gly.pro. It is significant that peroxidation of the peptide leads essentially to a single product (E) visible in the analyzer trace, while a variety of products is obtained from peroxidation of free proline. These products include three peaks absorbing at 440 m μ ; on the

basis of comparison of effluent times of authentic standards, two of these were identified as 4-transhydroxyproline (B) and 4-allo-hydroxyproline (D). Peak A, for which no authentic standard was available, has on the basis of published relative effluent times [10] tentatively been identified as 3-trans-hydroxyproline. These compounds, as well as several whose ninhydrin adducts absorb at 570 mu, are absent from the trace of gly.pro peroxidation. Peak E on the latter trace emerges within a few minutes of glutamic acid and its ninhydrin-adduct absorbs at 570 mµ. However, compound E is unreactive with glutamic decarboxylase and on paper chromatograms its pink ninhydrin color $(R_f 0.28)$ develops slowly in contrast to the deep purple of glutamic acid ($R_{\rm f}$ 0.27). The same compound is obtained in peroxidation of all N-substituted prolines investigated. The tentative structure Δ^{1} -pyrroline-2-carboxylic acid has been assigned for the following reasons: (1) the infrared spectrum shows a peak in the region of C=N stretching frequencies; (2) compound E easily decarboxylates but is slow to react with ninhydrin; (3) peroxidation of analogous substituted tetrahydrofurans leads chiefly to products of 3° hydrogen abstraction [11]. The synthesis of Δ^{1} -pyrroline 2-carboxylic acid for added confirmation of structure assignment is in progress.

4. Discussion

A free-radical mechanism for proline hydroxylation by hydrogen peroxide has been assumed [3,12], and a summary of evidence supporting such a mechanism has been published [6]. The free radical produced by homolytic splitting of $\rm H_2O_2$, presumably $\rm HO^{\cdot}$ [13], can abstract hydrogen from proline, leaving a prolyl-free radical which reacts further to give, e.g., substitution products such as alcohols [14].

When the ring nitrogen of proline is substituted by a group R, where $R\neq H$, its basicity will be lowered. Free or N-terminal proline is therefore protonated under our reaction conditions, while N-linked proline is not. The hydroxylation observed with free or Nterminal proline can be understood as an effect of Nprotonation on the site of free-radical attack. The full positive charge conferred on the basic ring nitrogen by protonation discourages attack at ∝ carbons 2 and 5; from the consequent "hunt" for hydrogen abstraction sites by the attacking radical, a variety of prolyl radicals may result leading to the variety of products seen on the analyzer. When N-protonation is prevented by substitution, e.g. when the ring N is involved in peptide linkage, the electrophilic free radical will tend to attack at carbons α to the nitrogen. The 3° hydrogen on carbon 2 of such a prolyl moiety should be favored for abstraction because of the relative stability of the resultant radical [15]. A reaction sequence is plausible that leads via production of 2hydroxyproline by dehydration to Δ^2 -pyrroline 2carboxylic acid. With hydrolysis, this eneamine will rearrange to Δ^1 -pyrroline 2-carboxylic acid [16].

Shibata et al. [17] have reported that the proline of pro.leu.gly is hydroxylated by Fe²⁺/H₂O₂, while hydroxylation of proline in gly.pro.leu is much diminished. While our work confirms and explains this observation, it conflicts with results of Hurych [12] who reported hydroxylation of proline in gly.pro.leu.gly.pro to an extent approximating that of proline in pro.gly. It is conceivable that out postulated intermediate, 2-hydroxyproline, might have survived his milder reaction conditions to react like 4-hydroxyproline in the colorimetric assay.

Proline appears to be in peptide linkage when hydroxylated in vivo [3,18,19]. Although a free-radical mechanism has been suggested for the hydroxylase reaction [3-5], such a mechanism is made unlikely

by our results. An alternate mechanism for hydroxylase activity has been put forth by Hayaishi and Nozaki [20]

Acknowledgements

This work has been supported by NIH grant AM-01270. We are grateful to Professor N.Sloane, University of Tennessee Medical School, for performing the amino acid analyzer runs, to Professor J.C.Sheehan, MIT, for the gift of 4-allo-hydroxyproline, and to Dr. B.Talbot, MIT, for crystalline β -casein A. It is a pleasure to acknowledge expert technical assistance by Mrs. Marie Colvill.

References

- [1] M.Chvapil and J.Hurych, Nature (London) 184 (1959) 1145.
- [2] S.Udenfriend, C.T.Clark, J.Axelrod and B.B.Brodie, J. Biol. Chem. 208 (1954) 731.
- [3] M.Chvapil and J.Hurych, Control of Collagen Biosynthesis, in: Int. Rev. Conn. Tissue Res., ed. O.A. Hall (Academic Press, New York) 4 (1968) 68.
- [4] W.van B.Robertson, in: Connective Tissue, Intracellular Macromolecules, N.Y. Heart Assoc. Symp. (Little Brown, Boston, Mass., 1964) p. 100.
- [5] M.Chvapil, J.Hurych, B.Smuchalova and E.Ehrlichova, in: Symp. Intern. Biochimie et Physiologie du Tissue Conjunctif, ed. Ph.Comte (Lyons, France, 1966) p. 455.
- [6] M.Bade and B.S.Gould, Biochim. Biophys. Acta 156 (1968) 425.
- [7] F. Woessner, Arch. Biochem. Biophys. 93 (1961) 440.
- [8] R.J.Block and K.Weiss, Amino Acid Handbook (C.C.Thomas, 1956) p. 76.
- [9] R.W.Cowgill and A.B.Pardee, Exper. Biochem. Res. Techniques (J. Wiley & Sons, 1957) p. 52.
- [10] P.B.Hamilton, Anal. Chem. 35 (1963) 2055.
- [11] N.Milas, personal communication.
- [12] J.Hurych, Hoppe-Seyler's Z. Physiol. Chem. 348 (1967) 426.
- [13] N.Uri, Chem. Rev. 50 (1952) 375.
- [14] J.K.Kochi, Science 155 (1967) 415.
- [15] M.J.S.Dewar, J. Am. Chem. Soc. 74 (1952) 3353.
- [16] A.B.Mauger and B.Witkop, Chem. Rev. 66 (1966) 47.
- [17] Y.Shibata, T.Tamaki, R.Fukuda, H.Itoh and T.Tsuzi, Wakayama Igaku 15 (1964) 297.
- [18] S.Udenfriend, Science 152 (1966) 1335.
- [19] M.L.Bade and B.S.Gould, FEBS Letters 2 (1969) 173.
- [20] O.Hayaishi and M.Nozaki, Science 164 (1969) 389.